# Latest content was relocated to https://bintanvictor.wordpress.com. This old blog will be shutdown soon.

## Sunday, February 15, 2015

### square integrable martingale

https://www.math.nyu.edu/faculty/varadhan/stochastic.fall08/3.pdf has a more detailed definition than Lawler's.

If a discrete martingale M(n) is a SIM, then

E[ M(99)^2 ] is finite, and so is E[ M(99999)^2 ].

Each (unconditional) expectation is, by definition, a fixed number and not random.

Consider another number "lim_(n-> inf) E[ M(n)^2 ]". For a given martingale, this "magic attribute" is a fixed number and not random. A given square-integrable martingale may have an magic attribute greater than any number there is, i.e. it goes to infinity. But this magic attribute isn't relevant to us when we talk about square-integrable martingales. We don't care about the limit. We only care about "any number n".

---
It's relevant to contrast that with quadratic variation. This is a limit quantity, and not random.

For a given process, Quadratic variation is a fixed value for a fixed timespan. For processA, Quadratic variation at time=28 could be 0.56; at time=30 it could be 0.6.

In this case, we divide the timespan into many, many (infinite) small intervals. No such fine-division in the discussion on square-integrable-martingales