Thursday, May 22, 2014

Poisson (+ exponential) distribution

See also post with 4 references including my book, HK, UMass.

Among discrete distributions, Poisson is one of the most practical yet simple models. I now feel Poisson model is closely linked to binomial
* the derivation is based on the simpler binomial model - tossing unfair coin N times
* Poisson can be an approximation to the binomial distribution when the number of coins is large but not infinite. Under infinity, I feel Poisson is the best model.

I believe this is probability, not statistics. However, Poisson is widely used in statistics.

Eg: Suppose I get 2.4 calls per day on average. What's the probability of getting 3 calls tomorrow? Let's evenly divide the period into many (N) small intervals. Start with N = 240 intervals. Within each small interval,

Pr(a=1 call) ~= 1% ( ? i.e. 2.4/240?)
Pr(a=0) = 99%
Pr(a>1) ~= 0%. This approximation is more realistic as N approaches infinity.

The 240 intervals are like 240 independent (unfair) coin flips. Therefore,
Let X=total number of calls in the period. Then as an example

Pr(X = 3 calls) = 240-choose-3 * 1%3 * 99%237. As N increases from 240 to infinite number of tiny intervals,
Pr(X = 3) = exp(-2.4)2.43/ 3! or more generically
Pr(X = x) = exp(-2.4)2.4x/ x!


Incidentally, there's an exponential distribution underneath/within/at the heart of the Poisson Process (I didn't say Poisson Distro). The "how-long-till-next-occurrence" random variable (denoted T) has an exponential distribution whereby Pr (T > 0.5 days) = exp(-2.4*.5). In contrast to the discrete nature of the Poisson variable, T is a continuous RV with a PDF curve (rather than a histogram). This T variable is rather important in financial math, well covered in the U@C Sep review.

For a credit default model with a constant hazard rate, I think this expo distribution applies. See other posts.

No comments:

Total Pageviews

my favorite topics (labels)

_fuxi (302) _misLabel (13) _orig? (3) _rm (2) _vague (2) clarified (58) cpp (39) cpp_const (22) cpp_real (76) cpp/java/c# (101) cppBig4 (54) cppSmartPtr (35) cppSTL (33) cppSTL_itr (27) cppSTL_real (26) cppTemplate (28) creditMkt (14) db (65) db_sybase (43) deepUnder (31) dotnet (20) ECN (27) econ/bank` (36) fin/sys_misc (43) finGreek (34) finReal (45) finRisk (30) finTechDesign (46) finTechMisc (32) finVol (66) FixedIncom (28) fMath (7) fMathOption (33) fMathStoch (67) forex (39) gr8IV_Q (46) GTD_skill (15) GUI_event (30) inMemDB (42) intuit_math (41) intuitFinance (57) javaMisc (68) javaServerSide (13) lambda/delegate (22) marketData (28) math (10) mathStat (55) memIssue (8) memMgmt (66) metaProgram` (6) OO_Design (84) original_content (749) polymorphic/vptr (40) productive (21) ptr/ref (48) py (28) reflect (8) script`/unix (82) socket/stream (39) subquery/join (30) subvert (13) swing/wpf (9) sysProgram` (16) thread (164) thread_CAS (15) thread_cpp (28) Thread* (22) timeSaver (80) transactional (23) tune (24) tuneDB (40) tuneLatency (30) z_ajax (9) z_algoDataStruct (41) z_arch (26) z_arch_job (27) z_automateTest (17) z_autoTrad` (19) z_bestPractice (39) z_bold (83) z_bondMath (35) z_book (18) z_boost (19) z_byRef^Val (32) z_c#GUI (43) z_c#misc (80) z_cast/convert (28) z_container (67) z_cStr/arr (39) z_Favorite* (8) z_FIX (15) z_forex (48) z_fwd_Deal (18) z_gz=job (33) z_gzBig20 (13) z_gzMgr (13) z_gzPain (20) z_gzThreat (19) z_hib (19) z_IDE (52) z_ikm (5) z_IR_misc (36) z_IRS (26) z_javaWeb (28) z_jdbc (10) z_jobFinTech (46) z_jobHunt (20) z_jobRealXp (10) z_jobStrength (15) z_jobUS^asia (27) z_letter (42) z_linq (10) z_memberHid` (11) z_MOM (54) z_nestedClass (5) z_oq (24) z_PCP (12) z_pearl (1) z_php (20) z_prodSupport (7) z_py (31) z_quant (14) z_regex (8) z_rv (38) z_skillist (48) z_slic`Problem (6) z_SOA (14) z_spring (25) z_src_code (8) z_swingMisc (50) z_swingTable (26) z_unpublish (2) z_VBA/Excel (8) z_windoz (17) z_wpfCommand (9)

About Me

New York (Time Square), NY, United States
http://www.linkedin.com/in/tanbin